
Page 1 of 7

How to do a manual byte swapping from the output of IBM MQ amqsbcg in
Windows and Linux x86 to find out the DLQ reason code

https://www.ibm.com/support/pages/node/7151034

Date last updated: 10-May-2024

Angel Rivera

IBM MQ Support
https://www.ibm.com/products/mq/support

Find all the support you need for IBM MQ

+++ Objective +++

I know, the title is very long but the title tries to provide the most common reason why IBM
MQ Administrators may want to do a manual byte swapping when working with Intel x64 64-
bit systems such as Windows and Linux x86.

The topic for this technote applies to several different scenarios when working with Intel-
based architectures when using IBM MQ. But the most common scenario is this:
You are dealing with undelivered messages found in the Dead Letter Queue (DLQ) of a
queue manager and you want to find out the reason why a message was sent to the DLQ.

++ Summary

This tutorial provides all the steps to help you do a byte swap of the following 4 bytes:
22 08 00 00

The following visual aid can be help you to do all the steps.
Before a byte swap: 22 08 00 00

22 08 00 00 => 00 00 08 22

 ++-----++

 ++ --------- ++

 ++ --------------- ++

++ --------------------- ++

After a byte swap: 00 00 08 22
It can be represented in Hexadecimal as: 0x00000822

https://www.ibm.com/support/pages/node/7151034
https://www.ibm.com/products/mq/support

Page 2 of 7

+ Related articles

a) The following article has a good explanation on using the MQ Explorer and amqsbcg to
look at the reason code.

https://www.ibm.com/support/pages/node/6589941
How to find reason code for message that was sent to the IBM MQ Dead Letter Queue - DLQ

b) Another scenario when the swapping of bytes might be necessary is when an MQ JMS
client application uses the JMS Delivery Delay feature and the delayed message is
temporarily stored in the SYSTEM.DDELAY.LOCAL.QUEUE and the message has a header DDH
that indicates the delay:

https://www.ibm.com/support/pages/node/7151033
Calculating the delay time for a message in SYSTEM.DDELAY.LOCAL.QUEUE in an IBM MQ
queue manager

https://www.ibm.com/support/pages/node/6589941
https://www.ibm.com/support/pages/node/7151033

Page 3 of 7

+++ Background +++

"Byte Swapping" usually means reversing the order of the 2 bytes within each aligned pair.
Such as, converting all the 2-byte words between big/little endian.

I work for IBM MQ Distributed Support and many of our customers use Intel-based hardware
architectures, which are "Little Endian" (see bellow for more details).
Thus, the audience for this document are MQ Administrators who use Intel-based systems,
such as Windows and Linux x86.

Quick question: How do you know if your Linux is using a x86 architecture?
Answer:
You can use the following command.
If you see "x86_64" in the output, then you are using x86.

$ uname -a
Linux riggioni1.fyre.ibm.com 4.18.0-477.27.1.el8_8.x86_64 #1 SMP Thu Aug 31 10:29:22 EDT
2023 x86_64 x86_64 x86_64 GNU/Linux

Hardware architectures that use POWER or SPARC (used by AIX, HPe Non Stop Server NSS,
Solaris SPARC and HP-UX), or EBDCID (z/OS, IBMi) use the "Bit Endian" method to represent
Bytes in a hex dump, when reading from LEFT to RIGHT, the MOST significant bytes are
shown FIRST.

While the hardware architectures based on Intel x86 use the "Little Endian" method to
represent Bytes in a hex dump, when reading from LEFT to RIGHT, the MOST significant
bytes are shown LAST. This is very COUNTERINTUITIVE!!!

https://en.wikipedia.org/wiki/Endianness#Byte_addressing
Endianness
"
In computing, endianness is the order or sequence of bytes of a word of digital data in
computer memory or data communication which is identified by describing the impact of
the "first" bytes, meaning at the smallest address or sent first.
Endianness is primarily expressed as big-endian (BE) or little-endian (LE):
- A big-endian system stores the most significant byte of a word at the smallest memory
address and the least significant byte at the largest.
- A little-endian system, in contrast, stores the least-significant byte at the smallest
address.
"

https://en.wikipedia.org/wiki/Endianness#Byte_addressing

Page 4 of 7

In particular, the following section has one of the best explanations that I have seen about
this topic:
.

Byte addressing[edit]
See also: Byte addressing

When memory bytes are printed sequentially from left to right (e.g. in a hex dump), little-endian
representation of integers has the significance increasing from left to right. In other words, it appears
backwards when visualized, which can be counter-intuitive.

This behavior arises, for example, in FourCC or similar techniques that involve packing characters into an
integer, so that it becomes a sequences of specific characters in memory. Let's define the
notation 'John' as simply the result of writing the characters in hexadecimal ASCII and appending 0x to

the front, and analogously for shorter sequences (a C multicharacter literal):

 ' J o h n '

hex 4A 6F 68 6E

 -> 0x4A6F686E

On big-endian machines, the value appears left-to-right, coinciding with the correct string order for reading
the result:

increasing addresses →

... 4Ah 6Fh 68h 6Eh ...

... 'J' 'o' 'h' 'n' ...

But on a little-endian machine, one would see:

increasing addresses →

... 6Eh 68h 6Fh 4Ah ...

... 'n' 'h' 'o' 'J' ...

https://en.wikipedia.org/w/index.php?title=Endianness&action=edit§ion=15
https://en.wikipedia.org/wiki/Byte_addressing
https://en.wikipedia.org/wiki/Hex_dump
https://en.wikipedia.org/wiki/FourCC
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/C_syntax#Character_constants

Page 5 of 7

+++ Answer +++

The following technote provides the answer:
https://www.ibm.com/support/pages/node/6589941
How to find reason code for message that was sent to the IBM MQ Dead Letter Queue DLQ

In particular, you use the command:
 amqsbcg DLQ QMgrName > DLQ-out.txt

When the queue manager sends a message to the DLQ, a Dead Letter Header (DLH) will be
added to the message, and it is shown at the top of the section for the Payload when using
the amqsbcg command.

In the output file from amqsbcg, take a look at the FIRST line of the payload (after the line
for "length") contains the part of the DLH that has the reason code.

Notice the value for the 9-12 bytes (5th and 6th pair from the output).

For example:

**** Message ****

length - 697 bytes

00000000: 444C 4820 0100 0000 2208 0000 5143 315F 'DLH"...QC1_'

 **** ****

 5th 6th pair of bytes

To better visualize these bytes, let's isolate them from the other bytes in the 1st line and
then let's add a space to clearly mark each individual byte:

value 22 08 00 00

byte position 9 10 11 12

In AIX systems, you could use the "mqrc" command to find out the meaning of these 4 bytes.
You have to compose the bytes all together and without space and then add a "0x" at the
beginning to indicate that it is hexadecimal.

value 22 08 00 00

Remove spaces:
22080000

Add the prefix: 0x
0x22080000

https://www.ibm.com/support/pages/node/6589941

Page 6 of 7

Then provide this hexadecimal number to the following MQ utility:
mqrc 0x22080000

But it will give you an error message:
No matching return codes

Why this error message?
In Windows and Linux Intel, you need to take into account the swapping of the bytes.

For some folks, the swapping is a trivial manner, and they can do it on their head.
But for other folks (like me!) it is a bit harder, and thus, I wanted to share my method,
showing every step:

1: let's show again the individual 4 bytes, exactly in the order in which they appear in the
1st line from the payload/content section of the amqsbcg command:

value 22 08 00 00

byte position 9 10 11 12

2: I like to draw an arrow to indicate a "transformation" in my mind:

value 22 08 00 00 ===>

byte position 9 10 11 12

3: Start with the byte in the LAST position (position 12th) and copy it immediately after the
arrow:

 Start

 Here

 ||

value 22 08 00 00 ===> 00

byte position 9 10 11 12 12

 ** ======>**

4: Then proceed to handle the byte in the 11th position and copy to the right, beyond the
byte that was copied in step 3 above:

value 22 08 00 00 ===> 00 00

byte position 9 10 11 12 12 11

 ** ============>**

5: Do the same for the byte in the 10th position and copy to the right, beyond the byte that
was copied in step 4 above:

value 22 08 00 00 ===> 00 00 08

byte position 9 10 11 12 12 11 10

 ** ==================>**

Page 7 of 7

6: Finally, do the byte in the 9th position:

value 22 08 00 00 ===> 00 00 08 22

byte position 9 10 11 12 12 11 10 9

 ** ========================>**

7: This is the result about the byte swap:

value 00 00 08 22

byte position 12 11 10 9

8: Let's remove spaces
00000822

9: Add the prefix: 0x
0x00000822

10: Use the MQ utility mqrc:

mqrc 0x00000822

2082 0x00000822 MQRC_UNKNOWN_ALIAS_BASE_Q

++ INCORRECT swappings

+ Do not swap each number for the byte!

value 21 08 ===> 8 0 1 2 INCORRECT!!

 + -----+

 + --------+

 + ------------+

 + ---------------+

+ Do not swap the pairs of bytes (amqsbcg shows 2 bytes as a pair)

value 2208 0000 ===> 0000 2208 INCORRECT!!

 ++++ ---- ++++

 ++++ -------------- ++++

+++ end +++

